Основной параметр любого монитора — размер экрана по диагонали. Самые простые мониторы имеют диагональ 14 дюймов (1 дюйм = 25,4 мм). Наиболее распространенные на сегодня — 15-дюймовые модели. Их постепенно вытесняют 17-дюймовые. Для поклонников больших экранов предназначены модели с диагональю 19, 21 и 22 дюйма. Для специального применения выпускаются мониторы и с большей диагональю. Надо заметить, что длина диагонали приводится для всего экрана ЭЛТ, видимая же область на 1…2 дюйма меньше.
Второй параметр —
шаг точки. О нем мы говорили, рассматривая различные типы ЭЛТ. При выборе монитора следует ориентироваться на следующие значения. Если вы не собираетесь работать с высокими разрешениями, шаг должен быть не более 0,28 мм для теневой маски и не более 0,25 мм для апертурной решетки или щелевой маски. В случае высоких требований к четкости изображения лучше выбрать модель, имеющую шаг 0,25 мм для теневой маски и 0,23 мм для апертурной решетки или щелевой маски.
Если апертурная решетка имеет переменный шаг (например, у ЭЛТ с плоским экраном), нередко значение шага приводится только для центральной области. На него и следует ориентироваться.
Весьма важный параметр — поддерживаемые разрешения и соответствующие им частоты кадровой развертки. Разрешение, которое будет использоваться для работы, в первую очередь зависит от диагонали экрана. Наиболее часто используемые значения приведены ниже в таблице 1.
Таблица 1.
Размер диагонали,дюймов
|
Разрешение, пикселов
|
14 и 15
|
800 х 600
|
17 и 19
|
1024 х 768
|
21 и 22
|
1280 х 1024
|
Естественно, это не более чем рекомендации. Кто-то установит разрешение на шаг больше, чтобы на экране поместился максимум информации. Кто-то, наоборот, установит меньшее значение, дабы все элементы выглядели покрупнее. Однако, не стоит увлекаться.
При завышенных значениях разрешения все элементы интерфейса становятся слишком мелкими и, чтобы их различить, приходится сильно напрягать зрение. А если разрешение занижено, на экране помещается слишком мало информации и, дабы увидеть ее всю, приходится постоянно осуществлять прокрутку экрана, что снижает скорость работы.
При выборе рабочего разрешения необходимо учесть и максимальное физическое разрешение, которое способен обеспечить данный монитор. Физическое разрешение напрямую зависит от шага точки и диагонали монитора. Фактически оно (точнее, его горизонтальная составляющая) определяется как отношение ширины видимой области экрана монитора по горизонтали к шагу по горизонтали.
Проиллюстрируем это на примере. Пусть имеется 15-дюймовый монитор с шагом 0,28 мм на основе апертурной решетки. Поскольку последняя лимитирует разрешение по горизонтали (струны расположены вертикально), его и будем рассчитывать. Диагональ видимой области 15-дюймового монитора обычно составляет около 14 дюймов (366 мм). Для традиционных мониторов с отношением высоты к ширине как 3 : 4 ширина экрана составляет около 0,8 от диагонали.
Таким образом, ширина экрана монитора составит 366 · 0,8 = 293 мм. Делим это значение на шаг и получаем максимальное разрешение по горизонтали 1046 пикселов. Исходя из этого, можно с уверенностью сказать, что данный монитор способен работать на разрешениях вплоть до 1024 х 768 пикселов, а вот 1152 х 864 и, тем более, 1280 х 1024 пиксела ему уже „не по зубам”.
Другой пример. 17-дюймовый монитор с традиционной теневой маской и шагом точки 0,25 мм. Поскольку у теневой маски шаг точки измеряется по диагонали, вычислим его значение по горизонтали. Для этого поделим 0,25 мм на коэффициент 1,15 (некий усредненный коэффициент, показывающий отношение шага точки по диагонали к шагу точки по горизонтали у теневой маски).
Таким образом, шаг точки по горизонтали будет около 0,22 мм (реально чуть меньше, но все округления при данном расчете производятся в „худшую” сторону). Видимая область диагонали 17-дюймового монитора около 16 дюймов (406 мм). Следовательно, ширина экрана будет равна 406 х 0,8 = 324 мм. Физическое разрешение по горизонтали в этом случае составит 324 : 0,22 = 1472 пиксела. Значит этому монитору доступны разрешения вплоть до 1280 х 1024 пиксела, а вот 1600 х 1200 — уже нет.
Теперь о
частоте кадровой (вертикальной) развертки. Хотя во многих справочниках утверждается, что минимальное ее значение, необходимое для комфортной работы, равно 75 Гц, эта цифра явно занижена. При указанной частоте более половины людей способны заметить мерцание изображения. Лучше всего, если при рабочем разрешении частота кадровой развертки равна 100 Гц. Только тогда глаз действительно не различает мерцания изображения. В крайнем случае, допустимо значение 85 Гц.
Не стоит сбрасывать со счетов и
частоту строчной (горизонтальной) развертки. Она измеряется в килогерцах и показывает, сколько горизонтальных строк способен отобразить монитор за одну секунду. Зная предполагаемое рабочее разрешение, а также частоту кадровой развертки, достаточно просто получить необходимое значение частоты строчной развертки. Так же легко выполнить и обратное преобразование.
Проиллюстрируем это на примере. Для работы в режиме 1024 х 768 пикселов при частоте кадровой развертки 100 Гц определим частоту строчной развертки. Исходя из того, что 768 строк необходимо прорисовать 100 раз в секунду, получаем 768 · 100 = 76800 Гц = 76,8 кГц. Не следует забывать и про обратный ход лучей (схемам развертки требуется время, чтобы вернуть пучок электронов на исходную позицию перед началом сканирования следующей строки).
Это добавляет к вычисленному значению еще от 5 (при высоком разрешении) до 10% (при низком разрешении), в среднем около 7%. Таким образом, для работы в режиме 1024 х 768 пикселов при частоте кадровой развертки 100 Гц частота строчной развертки должна быть около 82 кГц.
Другой пример: производитель монитора указал строчную частоту 110 кГц, необходимо выяснить кадровую частоту при разрешении 1280 х 1024 пиксела. Для ее определения делим строчную частоту на число строк и получаем 110 : 1024 = 0,107 кГц = 107 Гц. Вводя поправку на обратный ход лучей, получаем частоту кадровой развертки около 100 Гц.
Для чего нужно знать частоту строчной развертки? Чтобы выяснить, какую частоту кадров сможет обеспечить монитор при том или другом разрешении. Если эта частота менее 100 Гц, стоит рассмотреть другие варианты, а если менее 85 Гц, то следует однозначно отказаться от покупки данного монитора.
Все приведенные здесь рассуждения относятся к построчной (Non Interlaced) развертке, при которой изображение на экране монитора формируется за один кадр. Однако существует и чересстрочная (Interlaced) развертка, когда формирование изображения осуществляется полукадрами (вначале четные строки, потом нечетные). Режим чересстрочной развертки достался в наследство от телевидения (он там используется до сих пор) и применялся в самых первых мониторах. Важно знать, что для нормальной, без вреда здоровью, работы в мониторе должна использоваться только построчная развертка.
Еще один параметр монитора —
полоса пропускания видеотракта. К сожалению, производители редко приводят ее значение, а зря: недостаточная полоса способна заметно ухудшить изображение, сделать его нечетким, „замыленным”.
Для ориентира:
- для 14-дюймовых мониторов полоса пропускания видеотракта должна быть около 65 МГц;
- 15-дюймовых — 85…110 МГц (первое значение относится к экономичным моделям, второе — к лучшим);
- 17-дюймовых — 110…200 МГц;
- 19-дюймовых — 150…220 МГц;
- 21-дюймовых — 200…350 МГц.
Рассматривая параметры монитора, не следует сбрасывать со счетов видеокарту. Если она не способна выдать видеосигнал с нужными параметрами, то каким бы хорошим ни был монитор, изображение все равно будет нечетким, „замыленным”.
Стоит отметить и схемы управления. Все выпускаемые сейчас CRT-мониторы, за исключением самых простых 14-дюймовых, имеют цифровые схемы управления. Это позволяет сохранять геометрические размеры и положение изображения при переходе из режима в режим (смене разрешения). Да и число параметров изображения, поддающихся регулировке, у монитора с цифровым управлением на порядок больше.