Сайт радиолюбителей Республики Коми.

: главная: странички:

Многоточечный термометр на датчиках температуры AD22100.

В радиолюбительской практике очень часто возникает необходимость, при которой необходимо контролировать температуру в нескольких точках. Данную проблему довольно легко устранить. Если установить внутри объекта и вне его, несколько датчиков температуры серии AD22100 и собрав очень простое устройство из обычного стрелочного микроамперметра и еще нескольких деталей, можно в любой момент узнать температуру в интересующих точках.

Датчики температуры серии AD22100 выпускают в корпусах двух модификаций - рис. 1. Кроме конструкции корпуса, датчики с разными буквенными индексами отличаются рабочими интервалами температуры: КТ (KR) - 0...+100 °С, AT (AR) - -40...+85 °С и ST (SR) - -50...+150 °С. При напряжении питания 5 В потребляемый ток не превышает 0,5 мА.

Рис. 1

Выходное напряжение Uвыx - между выводами 2 и 3 или 2 и 4 линейно зависит от температуры корпуса датчика. Его значение при температуре Т, заданной в градусах Цельсия, можно найти по формуле:

Uвых = Uп/(1375 + 22.5Т/5000), которая справедлива при напряжении питания Uп от 4 до 6 В. Отклонение от этого закона не превышает 1 °С - у датчиков с индексами ST и SR — 2 °С.

Таким образом, при Uп = 5В и Т = 0 °С напряжение на выходе датчика — 1,375 В, изменяясь на 0,0225 В с каждым градусом температуры. Характеристики датчиков строго нормированы, поэтому при необходимости их можно подключать поочередно к одному и тому же измерителю температуры без дополнительной калибровки. На рис. 2 показана схема многоточечного термометра, в котором реализована эта идея.

Число размещенных в необходимых местах датчиков ВК1 — ВКn ограничено лишь суммарным током, потребляемым от батареи GB1. Любой из них подключают к измерительному узлу нажатием соответствующей кнопки SB1 — SBn. Одновременно вторая группа контактов кнопки замыкает цепь питания прибора. Высокая крутизна температурной характеристики датчиков позволила обойтись без усилителя, применив в качестве индикатора температуры микроамперметр РА1, включенный в диагональ измерительного моста, образованного датчиком и резистивным делителем напряжения R1R5R6.

Чтобы нулевой температуре соответствовало нулевое показание микроамперметра, суммарное падение напряжения на резисторах R5 и R6 должно быть равно 1,375В, чего добиваются с помощью подстроечного резистора R6. Сумма сопротивлений резисторов R2, R4 и рамки микроамперметра выбрана таким образом, что каждому градусу температуры соответствует отклонение стрелки микроамперметра РА1 на 1 мкА. Это позволяет, взяв микроамперметр нужной чувствительности, использовать имеющуюся на его шкале градуировку для отсчета температуры.

Рис.2.

Интегральный стабилизатор DA1 понижает напряжение батареи GB1 до необходимых для питания датчиков 5В. Светодиод HL1 служит индикатором не только включения прибора, но и состояния батареи GB1. Пока ее напряжение в норме - 6,8...9В, при нажатии любой из кнопок SB1 — SBn к светодиоду HL1 будет приложено напряжение более 1,8В и он будет светиться. Полное отсутствие свечения светодиода свидетельствует о необходимости заменить батарею.

Чтобы не влиять на работу стабилизатора DA1, ток в цепи контроля выбран небольшим, а в качестве HL1 применен светодиод красного свечения повышенной яркости. Если установить светодиод другого цвета, изменится порог срабатывания индикатора.

Детали

Монтаж термометра — навесной. Большинство деталей, в том числе один из датчиков - например, ВК1, можно разместить на плате из стеклотекстолита и укрепить ее на выводах микроамперметра РА1. Последний помещают в корпус из изоляционного материала. На передней панели прибора, кроме микроамперметра, устанавливают кнопки и светодиод HL1.

Если датчики вынесены на расстояние более 1...2 м от измерительного блока, соединительные провода должны быть экранированы. Датчики, установленные на открытом воздухе или в помещении с повышенной влажностью, а также места пайки проводов к их выводам обязательно защищают влагостойким, например, эпоксидным компаундом. При измерении температуры воды или другой жидкости на защиту датчиков от ее воздействия следует обратить особое внимание.

Автором использован малогабаритный микроамперметр М4248 50-0-50 мкА. Для повышения точности отсчета температуры желательно применить прибор со шкалой большего размера, но с теми же значениями тока полного отклонения стрелки в одну и другую сторону. Дело в том, что датчики серии AD22100 не могут принимать "втекающий" в вывод 2 ток более 80 мкА, а именно в этом режиме они в данном термометре работают при отрицательной температуре.

Настройка термометра

Сбалансировав измерительный мост не при нулевой, а при минимальной отрицательной температуре, можно воспользоваться микроамперметром с нулем в начале шкалы и значительно большим током полного отклонения - "вытекающий" из датчика ток может достигать нескольких миллиампер. Для этого достаточно с помощью подстроечного резистора R6 установить напряжение в точке соединения резисторов R1, R2 и R5 равным выходному напряжению датчика при нужной температуре. Естественно, оцифровку шкалы микроамперметра в этом случае придется изменить.

Калибруют термометр, помещая один из датчиков поочередно в холодную и горячую среду, например, воду с контролируемой точным лабораторным термометром температурой. При температуре среды, близкой к нулевой или другой, при которой мост должен быть сбалансирован, стрелку микроамперметра РА1 устанавливают на соответствующее показанию образцового термометра деление шкалы с помощью подстроечного резистора R6.

Затем переносят датчик в среду с температурой, как можно больше отличающейся от первой, дожидаются стабилизации показаний - стрелка микроамперметра РА1 должна перестать "ползти" и вновь устанавливают стрелку на нужное деление. На этот раз — подстроечным резистором R4. Если пределов регулировки R4 недостаточно, следует изменить номинал резистора R2. Процедуру калибровки необходимо повторить несколько раз.

И. Нечаев

Rambler's Top100
Rambler's Top100 Рейтинг ресурсов УралWeb
Copyright © Russian HamRadio

Hosted by uCoz